
c

EVOLUTION OF AUTONOMOUS SELF-RIGHTING BEH.4VIORS
FOR ARTICULATED NANOROVERS

Edward Tunstel

Jet Propulsion Laboratory, California Institute of Technology, yor6;tr.t~
4500 Oak Grove Dr., RilS 107-102, Pasadena, CA 91109 USA

phone: (818) 393-2666, fax: (818) 354-8172, e-mail:tunstel@robotics.jpl.nasa.gov

&U&akrry
.c;skucor

ABSTRACT

Miniature rovers with articulated mobility mecha-
nisms are being developed for planetary surface explo-
ration on Mars and small solar system bodies. These
vehicles are designed to be capable of autonomous re-
covery from overturning during surface operations.
This paper describes a co.mputationa1 means of devel-
oping motion behaviors that achieve the autonomous
recovery function. It proposes a control softuare de-
sign approach aimed at reducing the effort involved
in developing self-righting behaviors. The approach
is based on the integration of evolutionary computing
with a dynamics simulation environment for evolving
and evaluating motion behaviors. The automated be-
havior design approach is outlined and its underlying
genetic programming infrastructure is described.

1 INTRODUCTION

Advances in micro-technology and mobile robotics
have enabled the development of extremely compact
and lightweight rovers for space applications. A par-
ticularly promising application is the use of miniature
rovers, with a mass of tens or hundreds of grams,
for planetary surface exploration. Such miniature
robotic vehicles equipped with on-board science in-
struments have been proposed as possible payloads
on landers used for missions to Mars, small bodies, or
the moons of gas giant planets [l]. They have come
to be known as nanorovers due to their small size rel-
ative to microrovers such as Sojourner - the Mars
Pathfinder rover deployed on Mars in July of 1997.
Nanorovers could be used on flight missions, as in-
dividual units or cooperative teams: to survey areas
around a lander, or even to conduct long-range explo-
ration involving measurement of surface mineralogic
and morphologic properties. Research efforts are un-
derway to develop nanorovers that include mobility,
computation. power, and communications in a pack-
age of several hundred grams in mass [l]. 'Thus far,
a functional nanorover prototype has been developed

that is capable of autonomous mobility, science data
gathering, and transmission of telemetry to an oper-
ator control station [2]. A flight version of the rover
is currently under development as a technology ex-
periment on an asteroid sample return mission called
MUSES-C. The MUSES-C flight mission is being im-
plemented by Japan's Institute of Space and Astro-
nautical Science (ISAS) and NASA [3][4]. In addi-
tion to the flight development effort, the nanorover
concept and design are being refined through ongo-
ing technology research efforts. The aim is to develop
miniature, but scientifically capable, rovers that could
easily fit within the projected mass/volume reserves
of future missions to Mars and small planetary bodies
(asteroids and comets).

The current nanorover prototype features a novel
wheeled mobility mechanism that allows it to exe-
cute motions beyond conventional rolling and turning.
Its articulated mechanism of wheels on posable-struts
can be thought of as a hybrid wheeled-legged mobil-
ity system. With this design, the rover is capable
of operating with its chassis upside down, recovering
from accidental overturning, and even hopping in very
small gravity fields. In this paper, we focus on the im-
portant mobility control feature of autonomous self-
righting and present an approach to automatic discov-
ery/learning of associated motior, control behaviors.
We use the term self-righting to refer to the act of ma-
neuvering the rover's articulated mobility mechanism
to effect recovery from an initial overturned state to
its nominal upright driving configuration. Due to the
wide range of possible motions permitted by its mobill .

ity mechanism, considerable time and effort could be
spent designing general self-righting motion sequences
for the nanorover. The problem is complicated further
when resource limitations (e.$. available power, time,
etc) or certain flight constraints must be considered
in the solution. A control software design approach is
proposed that is aimed at reducing the effort involved
in developing self-righting behaviors that are sensi-

mailto:e-mail:tunstel@robotics.jpl.nasa.gov

FIG. 1: Articulated nanorover prototype.

tive to on-board resource limitations. The approach
is based on the integration of evolutionary computing
with a dynamics simulation environment for evolv-
ing and evaluating suitable motion behaviors. The
automated behavior design approach is outlined and
the software infrastructure necessary for implement-
ing the strategy is described.

2 NANOROVER MOBILITY

The current nanorover prototype is illustrated in
Fig. 1. The rover’s mobility mechanism is comprised
of four wheels on articulated struts. Each wheel and
strut can be actuated independently. The largest di-
mension (length) of the rover is 20 cm which makes
it 30% the size of Sojourner. Each aluminum wheel
contains a drive motor within, and is cleated with a
helical tread on the outer surface to enhance traction
and skid-steering performance. In addition to basic
functionality for forward/reverse driving and turning,
the high-mobility articulated mechanism provides the
rover with the capability to self-right, as well as op-
erate with its body/chassis upside down. This im-
plies the ability to recover from overturning, and al-
lows body pose control for preferential pointing of
on-board science instruments. Aside from the rover’s
apparent miniature size, it is the capability to self-
right which distinguishes it from many other plane-
tary rover designs. The articulated chassis enables
robust mobility necessary for surface navigation and
exploration in the natural terrains of terrestrial plan-
ets. Moreover, its capability to recover from acciden-
tal overturning enhances its survivability as well as
the likelihood of mission success.

The rover has an on-board computer that can
be programmed to execute autonomous sequences of
strut , body, and wheel motions, which cause the vehi-
cle to self-right (a s well as perform other useful behav-
iors). Its suite of attitude sensors and motor actuators
permits simultaneous coordinated control of strut ar-
ticulation and body pose. As indicated in Fig. 1, the
four struts can rotate in two directions about a com-

FIG. 2: Posable-strut and chassis configurations.

mon pivot axis (y-axis in the figure), however, struts
on either side cannot rotate past one another. In ad-
dition to strut rotations, the body can be actuated
to pitch about the same axis. These rotations consti-
tute the articulation degrees offreedom On (n = 1-5);
the wheel motions provide four rolling degrees of free-
dom. Strut angles are measured by potentiometers;
wheel rotational displacements are measured by en-
coders. The flight rover design includes sensors at
each wheel for detecting proximity to, and contact
with, the ground. It also includes a sun sensor for
detecting body orientation relative to the sun. A va-
riety of pose configurations that are possible with this
mechanism is shown in Fig. 2.

Due to the flexibility of the mobility mechanism
and chassis, a number of feasible motion sequences
can be executed that result in successful self-righting
of the rover from an initially overturned state. One
possible sequence is illustrated in Fig. 3, in which the
motion progresses from (a)-(f). From the initial over-
turned state in (a)l the rover actuates its struts to-
wards the terrain until its wheels make contact, (b).
The same strut motion continues until t,he configu-
ration in (d) is achieved. At this point, the body
is actuated to its nominal upright configuration, (e)-
(f) . A single fixed sequence such as this is inadequate
as a general self-righting solution. While effective on
relatively flat terrain, it may fail if attempted from
other possible initial configurations. A more general
solution calls for an algorithm or set of control rules
that assesses the initial overturned configuration via
sensory perception, and produces expedient actuator
controls. For completeness, the behavior should be
able to prescribe control responses for the range of
possible sensor stimuli. This can be achieved effi-
ciently with behavior control rules that accept inputs
that are partitioned into intervals, or even fuzzy sets
[SI.

FIG. 3: Example self-righting sequence.

2.1 PRACTICAL ISSUES

Some of the motion sequences that can be exe-
cuted with the posable-strut mechanism are more fa-
vorable than others with regard to the total number
of motions necessary (and therefore, power required),
and the required execution time. Nanorovers used
for flight missions rely on solar energy as their pri-
mary electrical power source. The flight nanorover
is designed to have most sides of its chassis popu-
lated by solar panels, with the primary solar panel
located on the nominal top side. This design ensures
that sufficient power will always be available for ac-
tuation of motors needed to self-right. The maxi-
mum size of the primary solar panel for these rovers
is limited by the small footprint of the vehicles. As
such, nanorovers must operate within the constraint
of relatively low power budgets. Sufficient available
on-board power for mobility actuators, science instru-
ments, and communications is of primary concern for
nanorovers. Designs for self-righting and other mo-
tion behaviors must be sensitive to on-board power
constraints. Some of the most intuitive solutions
(such as that in Fig. 3) may not sufficiently account
for realistic on-board resource limitations. Therefore,
it behooves the rover control engineer to explore the
space of feasible solutions for behaviors that would
minimize power consumption and comply with other
operational constraints or flight rules. Execution time
required for self-righting is also of concern since the
frequency of unintentional overturning may be signifi-
cant for nanorovers operating in certain environments
and terrain-types. The cumulative time spent recov-
ering from frequent overturning could easily detract
from time allotted for science data gathering and nav-
igation goals. An additional concern for nanorovers
is the negative impact that dusty environments can
have on solar panel efficiency. Due to their low pro-
file relative to the terrain, dust could accumulate over
time on the rovers' solar panels. The problem is only
compounded each time the rover overturns. This is-
sue is currently being addressed by a dust mitigation
approach planned for the flight rover, which is based

the use of an electronic dust rejection apparatus.
As an alternative to the tedious effort of examin-

ing all of the possible motion sequences, an automatic
computational method of self-righting behavior de-
sign is, proposed in the following section. The goal
and expected result of the approach is the discovery
of one or more viable self-righting behaviors that can
be used as is, or as a starting point for further refine-
ment. The advantage is a savings in time and effort
that would otherwise be spent searching the space of
possible motion sequences. The approach is based
on an application of evolutionary algorithms, which
have proven useful for problems involving search and
optimization.

3 SELF-RIGHTING EVOLUTION
In this section, we outline an approach to artificial

evolution of self-righting behaviors. More specifically,
we propose genetic programming for off-line learning
of self-righting behaviors for nanorovers. A genetic
programming (GP) system [6] computationally sim-
ulates the Darwinian evolution process by applying
fitness-based selection and genetic operators to a pop-
ulation of candidate solutions, which are represented
as computer programs or subroutines. The main dis-
tinction between genetic programming and genetic al-
gorithms is that the former adapts hierarchical sym-
bolic data structures (e.g. computer programs), while
the latter adapts linear numerical data structures (e.g.
bit strings or arrays of integers or reals). For our
purposes, the computational structures undergoing
adaptation are sets of condition-action rules of dy-
namically varying size and structure. That is, the
population consists of behavioral rule sets, each rep-
resented as a tree data structure, of different num-
bers of rules. Tree nodes, or genes, may consist of
components of a generic if-then rule construct and
common logic connectives (e.g. A N D , OR, and NOT), as
well as input/output variables and parameters associ-
ated with the problem. Each set of rules constitutes a
motion behavior that maps articulation, orientation,
and wheel-contact sensor values into strut and body
motions.

The objective of the GP system is to create a pop-
ulation of candidate self-righting behaviors, evaluate
behaviors via dynamics simulation, and improve thd '

population through artificial evolution until one or
more highly fit solutions is discovered. All behavioral
rule sets in the initial population are randomly cre-
ated from syntactically valid combinations of genes.
Descendant populations are created by genetic oper-
ators - primarily reproduction and crossover. For
the reproduction operation, several behaviors selected
based on superior fitness are copied from the current

population into the next, i.e. the new generation.
The crossover operation starts with two parental rule
sets and produces two offspring that are added to the
new generation. This operation selects a random por-
tion of each parer,tal tree structure and swaps them
(while maintaining valid syntax) to produce the two
offspring. GP cycles through the current population
evaluating the fitness of each behavior based on its
performance in computer simulations of the control
system. After a numerical fitness is determined for
each behavior, the genetic operators are applied to
the fittest behaviors to create a new population. This
cycle repeats on a generation by generation basis un-
til satisfaction of termination criteria (e.g. discovery
of a highly fit behavior, lack of improvement, max-
imum generation reached, etc). At termination, the
GP result is the best-fit self-righting behavior that
appeared in any generation. The dynamic variabil-
ity of the symbolic representation allows for rule sets
of various sizes. This enhances population diversity,
which is important for the success of an evolutionary
computing system.

The overall process is summarized as illustrated in
Fig. 4. Candidate self-righting behaviors in the popu-
lation evolve in response to selective pressure induced
by their relative fitnesses for implementing the desired
motion behavior. This population-based approach
is particularly suitable for global search and opti-
mization in large and/or multi-modal search spaces.
The key distinction between such evolutionary search
methods and a conventional gradient descent based
approach is that, in the former, multiple points in
the search space are sampled in parallel. The ap-
proach has been verified through numerous exam-
ples reported in the literature. In the definitive GP
text [6], Koza has applied genetic programming to
evolve computer programs that solve a number of in-
teresting control problems. The same techniques have
been successfully applied to search and optimization
of robot manipulator trajectories [’i], mobile robot
control and navigation behaviors [8], and collective
behaviors for multi-robot systems [9]. Each imple-
mentation differs in various problem-dependent ways.
However, for robotic system applications: a common
characteristic is the formulation of a fitness measure
that drives the evolution and is coupled to a motion
simulation. The viability of evolved behaviors is a
function of the thoroughness of the evaluation pro-
cess. Performance is based solely on evaluation of
behavioral responses predicted by the simulator, and
is computed by a user-prescribed fitness function. As
such, the success of’ the approach depends in large
part on the fitness function employed and the fidelity
of the simulation environment. Each of these integral

FIG. 4: Behavior evolution architecture.

aspects is discussed further below.

3.1 BEHAVIOR EVALUATION
In order to apply evolutionary algorithms for be-

havior evolution, a meaure of behavior fitness must
be formulated to drive the process. It is important
that the fitness function map observable parameters
of the problem into a spectrum of values that differen-
tiate the performance of behaviors in the population.
If the spectrum of fitness values is not sufficiently rich,
the fitness function may not provide enough informa-
tion to guide GP toward regions of the search space
where improved solutions might be found. For prob-
lems involving simulation of controlled behavior, a va-
riety of performance attributes can be considered for
inclusion in the fitness measure. Examples include a
maximum number of time steps, explicit error toler-
ances, terminating physical events such as task suc-
cess or failure, and penalties/rewards thereof. In gen-
eral, selected performance attributes can be weighted
to emphasize their relative importance in the search
for candidate solutions. The fitness function is anal-
ogous to the performance measure of optimal control
theory, or more generally, the objective function of
optimization theory.

One approach to evaluating evolving candidate
self-righting behaviors is to test them against a num-
ber of fitness cases, tabulate a performance score for
each case, and average the scores to determine an
overall fitness value. The initial postures for each fit-
ness case should be chosen to represent an overturned
configuration that can occur in the target environ-
ment. The number of fitness cases should be chosen
such that they represent the search space sufficiently
to allow the evolved strategy to generalize (i.e. handle
unforeseen initial conditions). Fig. 3a is one example
of a fitness case for the self-righting problem. A few
additional examples are illustrated in Fig. 5. For each
fitness case the goal is the same - recovery from an
initial overturned state to achieve the nominal upright

FIG. 5: Example fitness cases.

driving configuration.
We propose a self-righting fitness score based pri-

marily on the estimated power consumed by motors
(p) , the time elapsed during execution (t) , and the
percentage of progress made (IC, 5 100). Each of these
performance attributes is measured at the end of each
fitness case. It is possible, however, to formulate the
fitness evaluation such that performance is measured
during fitness case execution. This was done in [9]
where a reinforcement learning function was coupled
with fitness evaluation to install a progress indica-
tion during fitness trials. Power consumption can be
estimated from knowledge of the motor performance
characteristics and usage during execution. Elapsed
time is determined based on simulation ticks starting
from the beginning of the self-righting maneuver to
the end of the trial. The amount of progress made
is indicated by the percentage of angular displace-
ment achieved by the chassis from the initial posture
towards the desired nominal driving configuration.
With these so defined, an example fitness score for
a trial run through fitness case IC can be formulated
as

The overall fitness of a candidate self-righting Sehav-
ior would be computed by averaging the scores over
the total number of fitness cases defined. 'This exam-
ple fitness formulation rewards behaviors that consis-
tently achieve (or come close to) the desired upright
configuration in a timely manner, while minimizing
power consumption.

3.2 DYxmIcs SIMULATION
A simulation environment is a key component of

the approach described above. This is particularly
true for evolution of rover behavior(s). One of the
challenges of evolutionary robotics is the successful
evolution of robust controllers in simulation. It was
pointed out in [lo] that the use of simulation en-
vironments of questionable fidelity tend to result in
evolved behaviors that are not easily transferable to
real robots. However, for developing rover systems
designed to operate in unknown space environments,
evolution in simulation is often the most practical op-
tion. Behaviors evolved in simulations must, however,

be validated and verified to some extent on real rovers.
The use of rover and environment simulators of rea-
sonably high fidelity can mitigate such concerns. Pre-
existing simulators are particularly useful in stream-
lining rover control and navigation software develop-
ment efforts when prototype/flight hardware is un-
available or inaccessible.

A high-fidelity dynamics simulation system is avail-
able a t JPL for use in this work. It is based on the
JPL-developed DARTS/DSHELL [11] simulation tools.
DARTS/DSHELL is a multi-mission spacecraft simula-
tor with a real-time computational engine for flexible
multi-body dynamics. It includes libraries of hard-
ware models for various sensors, actuators, and mo-
tors. Its simulation infrastructure allows for interfaces
to a 3D animation viewer and rover research/flight
software. The interface between rover software and
the simulator enables software to issue control up-
dates to the simulator and receive state/sensor data
from the simulator. The computational engine com-
putes dynamics of multi-body systems based on iner-
tial properties of the bodies in the system and forces
applied to those bodies. In this dynamics simulation
system, the nanorover is modeled as a multi-body sys-
tem of wheels, struts, and a chassis. Different fric-
tion models can be created to simulate characteristics
of wheel-terrain interactions, and the gravitational
acceleration can be varied as well. Currently, the
DARTS/DSHELL spacecraft simulation tools are be-
ing leveraged to develop a related software simulation
toolkit that is more germane to rovers [12]. These sys-
tems provides suitable environments for rover/terrain
modeling and simulation that are useful for flight soft-
ware design and development. When integrated with
a genetic programming system, as described above,
high-fidelity simulators provide a fitness evaluation
medium for artificial evolution of rover behaviors.

4 ISSUES FOR SMALL BODIES
The approach as described thus far is nominally

focused on the basic discovery of self-righting behav-
iors that might be feasible on Earth and Mars. The
importance of a self-righting capability is magnified
in the case of surface exploration on small bodies like
asteroids. In this case, the gravitational fields are
substantially weaker than those of Earth or Mars, and .

the likelihood of unintentional overturning is substan-
tially higher. Before the proposed approach can be
applied to evolve effective behaviors for small-body
exploration, additional considerations must be fac-
tored into the dynamics simulation. Most notable
among these are appropriate gravitational effects and
terrain characteristics.

When accurate data about small bodies of interest

are unknown, assumptions about gravity and terrain
characteristics must be made. In a recent preliminary
study [13], the mobility performance of a nanorover
operating within a small-body gravity field was exam-
ined using a commercial dynamics simulation software
package. In that study, assumptions were made about
the environment of the near-Earth asteroid Nereus
(4660), the primary target of the MUSES-C flight
mission, which is less than one kilometer in diam-
eter. The surface gravity of Nereus is expected to
be 8-8Opg [4]. In [13], 20pg was assumed. The aim
of this small-body mobility study was to predict the
rover’s ability to maintain adequate tractive forces
with the ground surface to achieve forward progress.
Two wheel-terrain interaction models were consid-
ered. The first was based solely on Coulomb friction
(with a friction coefficient of 0.5); the second was a
combination of Coulomb friction and adhesive forces
(thought to arise due to electrostatic attractions be-
tween the wheels and a dusty surface). To computa-
tionally evolve self-righting behaviors for such envi-
ronments, the simulator used for behavior evaluation
must be capable of representing different gravity fields
and terrain types. The dynamics simulator mentioned
above offers this flexibility.

Until additional facts are learned about Nereus,
data presented in [4] and assumptions made in [13]
will be used as a baseline for our computational
behavior evolution experiments. For the upcoming
flight mission, relevant new findings will be factored
into the design of control and navigation behaviors for
mobility on the target asteroid. The various desirable
attributes of viable evolved behaviors will be identi-
fied for possible realization on the flight rover. This
activity will be supported by high-fidelity computer
simulations as well as hardware-based low-gravity
simulations that focus on evaluating behaviors in the
context of relevant mission scenarios and constraints.

5 SUMMARY AND CONCLUSIONS
Nanorovers with articulated mobility mechanisms

are capable of a variety of maneuvers besides conven-
tional rolling and turning. This paper has focused
on the problem of autonomous self-righting and has
expressed some of the practical aspects of the prob-
lem. An automated software design approach has
been proposed for developing rover control behaviors
for self-righting. Genetic programming is advocated
as a means for offline learning using a high-fidelity
dynamics simulation of the rover and environment.
The proposed approach can be used to synthesize self-
righting behaviors and optimize them based on per-
formance feedback from the simulator, which can be
interfaced with prototype rover control software. The

integrated system would be beneficial for streamlin-
ing rover software design and development efforts. In
addition to self-righting behaviors, the approach can
be applied to develop other functionalities for which
solutions are not already well-defined. The interested
reader can find source code for implementing GP in
the LISP programming language in [6]. Public do-
main implementations that are written in C or C++
are also available on the World Wide Web.

The technology described in this paper is part of an
ongoing effort to evaluate the utility of very low mass,
scientifically capable rovers for h4ars and small body
exploration. Technological advances towards robust
and survivable nanorovers will permit mobility-based
science surveys on planetary surfaces with a small
fraction of the science payload expected for currently
planned, and future, rover missions.

ACKNOWLEDGMENTS
The research described in this publication was carried

out by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronau-
tics and Space Administration. The dynamics simulation
environment is being developed by Jack Morrison and Jef-
frey Biesiadecki of the Jet Propulsion Laboratory.

REFERENCES
[l] B. Wilcox et al. Nanorovers for planetary explo-

ration. In A I A A Robotics Technology Forum, pages
11-1-11-6, &fadison, WI, Aug 1996.

[2] E. Tunstel, R. Welch, and B. Wilcox. Embedded con-
trol of a miniature science rover for planetary explo-
ration. In 7th Intl. Symp. on Robotics with Applica-
tions, 3rd World Automation Congress, Anchorage,
Alaska, May 1998.

[3] J . Kawaguchi et al. The MUSES-C, world’s first
sample and return mission from near earth asteroid:
Nereus. In 2nd IAA Intl. Conf. on Low-Cost Plane-
tary ilfissions, I4A-L-0202, Laurel, MD, Apr 1996.

[4] R. Jones et al. NASA/ISAS collaboration on the
ISAS MUSES C asteroid sample return mission. In
3rd IAA Intl. Conf. on Low-Cost Planetary Missions,
IAA-L98-0506, Pasadena, CA, Apr 1998.

[5] E. Tunstel. Mobile robot autonomy via hierarchi-
cal fuzzy behavior control. In 6th Intl. Symp. on
Robotics and ,bfanufacturing, 2nd World Automation ’

Congress, pages 837-843, Montpellier, France, May
1996.

[6] J.R. Koza. Genetic Programming: On the Program-
ming of Computers b y Means of Natural Selection.

. MIT Press. Cambridge, M A , 1993.

[’i] Y. Davidor. Genetic Algorithms and Robotics: “1
Heuristic Strategy for Optimization. World Scientific
Publishing Co., Teaneck, NJ, 1991.

[8] E. Tunstel and M. Jamshidi. On genetic program-
ming of fuzzy rule-based systems for intelligent con-
trol. International Journal of Intelligent Automation
and Soft Computing, 2(3):273-284, 1996.

[9] S. Calderoni and P. hlarcenac. Genetic program-
ming for automatic design of self-adaptive robots. In
W. Banzhaf et al., editors, Genetic Programming:
Proc. of the First European Workshop. Springer,
Paris, France, 1998.

[IO] hl. Matarid and D. Cliff. Challenges in evolv-
ing controllers for physical robots. Robotics and
Autonomous Systems, Special Issue: Evolutional
Robotics, 19(1):67-83, Oct 1996.

[ll] J. Biesiadecki, A. Jain, and M.L. James. Advanced
simulation environment for autonomous spacecraft.
In Zntl. Symp. on Artificial Intelligence, Robotics and
Automation in Space, Tokyo, Japan, Jul 1997.

[X] J. Yen, A. Jain, and J. Balaram. ROAMS: Rover
analysis modeling and simulation software. In Zntl.
Symp. on Artificial Intelligence, Robotics and Au-
tomation in Space, Noordwijk, The Netherlands, Jun
1999.

[13] E.T. Baumgartner et al. Mobility performance of
a small-body rover. In 7th Zntl. Symp. on Robotics
with Applications, 3rd World Automation Congress,
Anchorage, Alaska, May 1998.

